Kleene closure - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Kleene closure - traduzione in russo

UNARY OPERATION ON SETS OF STRINGS, USED IN REGULAR EXPRESSIONS FOR "ZERO OR MORE REPETITIONS"
Kleene closure; Kleene plus; Star operation; Σ*; Kleene operator; Kleene operators; Star closure

Kleene closure         

общая лексика

замыкание Клини

upvalue         
TECHNIQUE FOR CREATING LEXICALLY SCOPED FIRST CLASS FUNCTIONS
Closure (programming); Lexical closure; Closure (Computer Science); Lexical closures; Closure (computing); Upvalue; Function closure; Function closures; Closures (computer science); Closure (computer science); Local classes in Java

[ʌp'vælju:]

глагол

общая лексика

повысить стоимость

цену

повысить курс (валюты)

upvalue         
TECHNIQUE FOR CREATING LEXICALLY SCOPED FIRST CLASS FUNCTIONS
Closure (programming); Lexical closure; Closure (Computer Science); Lexical closures; Closure (computing); Upvalue; Function closure; Function closures; Closures (computer science); Closure (computer science); Local classes in Java
повысить стоимость

Definizione

Kleene closure

Wikipedia

Kleene star

In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V {\displaystyle V} is written as V {\displaystyle V^{*}} . It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions".

  1. If V {\displaystyle V} is a set of strings, then V {\displaystyle V^{*}} is defined as the smallest superset of V {\displaystyle V} that contains the empty string ε {\displaystyle \varepsilon } and is closed under the string concatenation operation.
  2. If V {\displaystyle V} is a set of symbols or characters, then V {\displaystyle V^{*}} is the set of all strings over symbols in V {\displaystyle V} , including the empty string ε {\displaystyle \varepsilon } .

The set V {\displaystyle V^{*}} can also be described as the set containing the empty string and all finite-length strings that can be generated by concatenating arbitrary elements of V {\displaystyle V} , allowing the use of the same element multiple times. If V {\displaystyle V} is either the empty set ∅ or the singleton set { ε } {\displaystyle \{\varepsilon \}} , then V = { ε } {\displaystyle V^{*}=\{\varepsilon \}} ; if V {\displaystyle V} is any other finite set or countably infinite set, then V {\displaystyle V^{*}} is a countably infinite set. As a consequence, each formal language over a finite or countably infinite alphabet Σ {\displaystyle \Sigma } is countable, since it is a subset of the countably infinite set Σ {\displaystyle \Sigma ^{*}} .

The operators are used in rewrite rules for generative grammars.

Traduzione di &#39Kleene closure&#39 in Russo